러닝 텐서플로
딥러닝 기초, 실무 활용, 규모 확장 의미를 알고 쓰는 텐서플로
텐서플로는 현재 가장 대중적인 딥러닝 라이브러리로서 각종 튜토리얼 코드를 웹에서 쉽게 찾을 수 있다. 하지만 딥러닝 기법을 이해하는 것도 벅찬 마당에 텐서플로 자체를 자세히 설명하는 자료는 찾아보기 어려운 실정이다. 이 책은 파이썬 지식이 있는 개발자를 대상으로 텐서플로의 구동 원리를 알려주며 기초부터 고급 활용법까지 파헤친다. 텐서보드, 케라스, TFLearn, 텐서플로 서빙 등 텐서플로를 더 강력하게 해주는 도구와 멀티스레딩 및 분산처리를 이용한 규모 확장 등 다른 곳에서 찾을 수 없는 실무 노하우가 담겨 있다. PC 한 대로 MNIST 예제를 돌려보는 단계를 벗어나고 싶다면 이 책을 피할 수 없을 것이다.
학계와 업계에 걸쳐 다양한 경력을 갖춘 응용 머신러닝 연구자이자 데이터 과학자. 다국적 기업 환경에서 선임 데이터 과학자로 재직하며 웹 마이닝, 텍스트 분석, 컴퓨터 비전, 세일즈와 마케팅, IoT, 금융시장 예측, 대규모 제조업 등 여러 분야를 넘나들며 데이터 과학과 딥러닝 연구개발팀을 이끌어왔다. 이전에는 전자상거래 스타트업에서 데이터 과학 연구개발을 주도했다. 주요 다국적 기업과 스타트업에서 데이터 과학 컨설팅을 수행하기도 했다. 컴퓨터 과학, 데이터 마이닝, 통계를 연구하다 보니 현재는 머신러닝, 딥러닝, 자연어처리, 약지도 학습, 시계열 등이 주요 연구 분야다.
CHAPTER 1 개요
1.1 딥러닝 속으로
1.2 텐서플로라는 이름에 담긴 의미
1.3 텐서플로 개괄
1.4 마치며
CHAPTER 2 텐서플로 설치에서 실행까지
2.1 텐서플로 설치
2.2 Hello World
2.3 MNIST
2.4 소프트맥스 회귀
2.5 마치며
CHAPTER 3 텐서플로의 기본 이해하기
3.1 연산 그래프
3.2 그래프, 세션, 페치
3.3 텐서의 흐름
3.4 변수, 플레이스홀더, 간단한 최적화
3.5 마치며
CHAPTER 4 합성곱 신경망
4.1 CNN 소개
4.2 MNIST 분류기: 버전 2
4.3 CIFAR10
4.4 마치며
CHAPTER 5 텍스트 1: 텍스트와 시퀀스 처리 및 텐서보드 시각화
5.1 시퀀스 데이터의 중요성
5.2 RNN 소개
5.3 텍스트 시퀀스용 RNN
5.4 마치며
CHAPTER 6 텍스트 2: 단어 벡터, 고급 RNN, 임베딩 시각화
6.1 단어 임베딩 소개
6.2 word2vec
6.3 사전 학습된 임베딩과 고급 RNN
6.4 마치며
CHAPTER 7 텐서플로 추상화와 간소화
7.1 이번 장의 개요
7.2 contrib.learn
7.3 TFLearn
7.4 마치며
CHAPTER 8 큐, 스레드, 데이터 읽기
8.1 입력 파이프라인
8.2 TFRecord
8.3 큐
8.4 완전한 멀티스레드 입력 파이프라인
8.5 마치며
CHAPTER 9 분산 텐서플로
9.1 분산 컴퓨팅
9.2 텐서플로의 병렬처리 요소
9.3 분산 예제
9.4 마치며
CHAPTER 10 모델 엑스포트와 서빙
10.1 모델을 저장하고 내보내기
10.2 텐서플로 서빙 소개
10.3 마치며
APPENDIX A 모델 구축과 텐서플로 서빙 사용에 관한 팁
A.1 모델 구조화 및 사용자 정의
A.2 텐서플로 서빙의 필수 및 권장 구성 요소
APPENDIX B 한국어판 부록: 텐서플로 1.7의 contrib.learn 폐기
APPENDIX C 한국어판 부록: 7.3.5절 TF-Slim 예제